A cryptic fragment from fibronectin's III1 module localizes to lipid rafts and stimulates cell growth and contractility
نویسندگان
چکیده
The interaction of cells with the extracellular matrix (ECM) form of fibronectin (FN) triggers changes in growth, migration, and cytoskeletal organization that differ from those generated by soluble FN. As cells deposit and remodel their FN matrix, the exposure of new epitopes may serve to initiate responses unique to matrix FN. To determine whether a matricryptic site within the III1 module of FN modulates cell growth or cytoskeletal organization, a recombinant FN with properties of matrix FN was constructed by directly linking the cryptic, heparin-binding COOH-terminal fragment of III1 (III1H) to the integrin-binding III8-10 modules (glutathione-S-transferase [GST]-III1H,8-10). GST-III1H,8-10 specifically stimulated increases in cell growth and contractility; integrin ligation alone was ineffective. A construct lacking the integrin-binding domain (GST-III1H,2-4) retained the ability to stimulate cell contraction, but was unable to stimulate cell growth. Both GST-III1H,2-4 and matrix FN colocalized with caveolin and fractionated with low-density membrane complexes by a mechanism that required heparan sulfate proteoglycans. Disruption of caveolae inhibited the FN- and III1H-mediated increases in cell contraction and growth. These data suggest that a portion of ECM FN partitions into lipid rafts and differentially regulates cytoskeletal organization and growth, in part, through the exposure of a neoepitope within the conformationally labile III1 module.
منابع مشابه
N-terminal type I modules required for fibronectin binding to fibroblasts and to fibronectin's III1 module.
Assembly of fibronectin fibrils occurs at the surface of substrate-attached cells and is mediated by the first to the fifth type I modules in the N-terminal 70 kDa portion of the molecule. The first type III module (III1) of fibronectin, not present in the 70 kDa portion, contains a conformation-dependent binding site for the 70 kDa N-terminal region of fibronectin, suggesting that the III1 mod...
متن کاملCryptic self-association sites in type III modules of fibronectin.
The first type III module of fibronectin (Fn) contains a cryptic site that binds Fn and its N-terminal 29 kDa fragment and is thought to be important for fibril formation (Morla, A., Zhang, Z., and Ruoslahti, E. (1994) Nature 367, 193-196; Hocking, D. C., Sottile, J. , and McKeown-Longo, P. J. (1994) J. Biol. Chem. 269, 19183-19191). A synthetic 31-mer peptide (NAPQ ... TIPG) derived from the m...
متن کاملRho-mediated Contractility Exposes a Cryptic Site in Fibronectin and Induces Fibronectin Matrix Assembly
Many factors influence the assembly of fibronectin into an insoluble fibrillar extracellular matrix. Previous work demonstrated that one component in serum that promotes the assembly of fibronectin is lysophosphatidic acid (Zhang, Q., W.J. Checovich, D.M. Peters, R.M. Albrecht, and D.F. Mosher. 1994. J. Cell Biol. 127:1447-1459). Here we show that C3 transferase, an inhibitor of the low molecul...
متن کاملStructure and functional significance of mechanically unfolded fibronectin type III1 intermediates.
Fibronectin (FN) forms fibrillar networks coupling cells to the extracellular matrix. The formation of FN fibrils, fibrillogenesis, is a tightly regulated process involving the exposure of cryptic binding sites in individual FN type III (FN-III) repeats presumably exposed by mechanical tension. The FN-III1 module has been previously proposed to contain such cryptic sites that promote the assemb...
متن کاملA novel role for the integrin-binding III-10 module in fibronectin matrix assembly
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 158 شماره
صفحات -
تاریخ انتشار 2002